Alternate TextTo enhance service speed and avoid tariff delays, we've opened a US warehouse. All US orders ship directly from our US facility.

C14-306

  Cat. No.:  DC60918   Featured
Chemical Structure
For research use only. We do not sell to patients.
We match the best price and quality on market.
Email:order@dcchemicals.com  sales@dcchemicals.com
Tel:+86 21 58447131
We are official vendor of:
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 9
  • 8
  • 13
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
More than 5000 active chemicals with high quality for research!
Field of application
C14-306 is a rationally designed ionizable lipid for brain targeting delivery, characterized by a linear 3,3'-diamino-N-methyldipropylamine (306) core conjugated with tetradecyl (C14) tails. This specific architectural configuration, synthesized via epoxide ring-opening amination, yields a molecular structure that optimally balances hydrophobic character and protonation capacity. The C14 alkyl chains enhance membrane integration and LNP stability, while the multiamine core facilitates efficient mRNA complexation and pH-dependent endosomal disruption. When formulated into LNPs with standard helper lipids (DOPE, cholesterol, DMG-PEG2000), C14-306-based nanoparticles exhibit favorable physicochemical properties, including a monodisperse size distribution near 110 nm and high mRNA encapsulation efficiency (>84%). High-throughput in vivo barcoding screening identified C14-306 LNPs as lead candidates for brain delivery, demonstrating a significant tropism for neuronal cells over liver tissue. In validation studies, LNPs incorporating C14-306 achieved a 6.9-fold increase in luciferase mRNA transfection in the mouse brain compared to the SM-102 benchmark, coupled with a substantial reduction in hepatic off-target expression. Flow cytometry confirmed preferential transfection of NeuN+ neurons, and safety assessments indicated no significant blood-brain barrier compromise or induction of systemic inflammation. The efficacy of C14-306 is attributed to its tailored pKa, promoting extended circulation and enhanced endosomal escape within brain cells. C14-306 represents a promising platform for systemic mRNA therapeutics targeting neurological disorders.
Cas No.:
Purity: 98%
Sotrage: 2 years -20°C Powder, 2 weeks 4°C in DMSO, 6 months -80°C in DMSO
Publication: Han EL, Kim D, Murray AM, Mrksich K, Hamilton AG, Tang S, Yoo S, Zhu AT, Tong ER, Palanki R, Hall ML, Bedingfield SK, Mitchell MJ. High-Throughput In Vivo Screening Identifies Structural Factors Driving mRNA Lipid Nanoparticle Delivery to the Brain. ACS Nano. 2026 Jan 19
Cat. No. Product name Field of application
DC60918 C14-306 C14-306 is a rationally designed ionizable lipid for brain targeting delivery, characterized by a linear 3,3'-diamino-N-methyldipropylamine (306) core conjugated with tetradecyl (C14) tails. This specific architectural configuration, synthesized via epoxide ring-opening amination, yields a molecular structure that optimally balances hydrophobic character and protonation capacity. The C14 alkyl chains enhance membrane integration and LNP stability, while the multiamine core facilitates efficient mRNA complexation and pH-dependent endosomal disruption. When formulated into LNPs with standard helper lipids (DOPE, cholesterol, DMG-PEG2000), C14-306-based nanoparticles exhibit favorable physicochemical properties, including a monodisperse size distribution near 110 nm and high mRNA encapsulation efficiency (>84%). High-throughput in vivo barcoding screening identified C14-306 LNPs as lead candidates for brain delivery, demonstrating a significant tropism for neuronal cells over liver tissue. In validation studies, LNPs incorporating C14-306 achieved a 6.9-fold increase in luciferase mRNA transfection in the mouse brain compared to the SM-102 benchmark, coupled with a substantial reduction in hepatic off-target expression. Flow cytometry confirmed preferential transfection of NeuN+ neurons, and safety assessments indicated no significant blood-brain barrier compromise or induction of systemic inflammation. The efficacy of C14-306 is attributed to its tailored pKa, promoting extended circulation and enhanced endosomal escape within brain cells. C14-306 represents a promising platform for systemic mRNA therapeutics targeting neurological disorders.
X